Saltar a contenido principal
galoisenlinea
Dr. Ricardo Lopez
Mi Moodle
Perfil
Calificaciones
Mensajes
Preferencias
Salir
Aula de autoevaluaciones. Dr. Ricardo López
Ruta a la página
Página Principal
/
►
Cursos
/
►
CALCULO DIFERENCIAL (En construcción)
/
►
AUTOEVALUACIONES
/
►
DIFERENCIAL C
/
►
Banco de preguntas
/
►
Preguntas
/
►
Editing a STACK question
Editing a STACK question
Expandir todo
General
Categoría actual
EXAMEN 1 (15)
Usar esta categoría
Guardar en categoría
Por defecto en DIFERENCIAL C (161)
EXAMEN 1 (15)
THOMAS 136-6 variante 2 (300)
Nombre de la pregunta
Question tests & deployed versions
Question variables
aa: rand_with_prohib(-15,15,[-1,0,1]); bb: rand_with_prohib(-15,15,[-1,0,1]); cc: rand_with_prohib(-15,15,[-1,0,1]); dd: rand_with_prohib(-15,15,[-1,0,1]); exp:aa*x^3+bb*x^2+cc*x+dd; pt:1; ta1:diff(exp,x); ta2:subst(x=pt,ta1); ta3:remainder(exp,(x-pt)^2); ta4:subst(x=pt,ta2); ta5:subst(x=pt,exp);
Random group
Texto de la pregunta
<p></p><p></p><p>\[\large{\textrm{En este ejercicio, calcular\'a la ecuaci\'on de la recta tangente}}\]</p><p>\[\large{\mathlarger{y(x)}\ \textrm{de la funci\'on:} \\ \ \mathlarger{f(x)={@exp@}}\ \textrm{en el punto}\ \textstyle{\Large{(1,{@ta5@})}}.}\]. </p><p><br>\[\large{\textrm{Siguiendo los pasos:}}\]</p><p><br></p><p></p><p> \[\large{\textrm{1.- Calcule la derivada}\ \ \ f^{\ \prime}\left(x\right) \ = \ \ }\] [[input:ans1]] [[validation:ans1]] [[feedback:prt1]]</p><p>\[\large{\textrm{2.- Calcule }\ \ \ f^{\ \prime}\left(1\right) \ = \ \ }\] [[input:ans2]] [[validation:ans2]] [[feedback:prt2]]</p><p> \[\large{\textrm{3.- Calcule la ecuaci\'on de la recta tangente}\ \ \ y\left(x\right) \ = \ \ }\] [[input:ans3]] [[validation:ans3]] [[feedback:prt3]]</p><p><br></p>
Puntuación por defecto
Retroalimentación específica
Penalty
Retroalimentación general
<p>Seguiremos los pasos indicados.</p><p>1.- Calculemos la derivada de \(\displaystyle f(x)={@exp@}\).</p><p><br></p><p>\(\displaystyle\frac{d}{dx}\left({@exp@}\right)=\)</p><p>\(\displaystyle = \frac{d}{dx}\left({@coeff(exp,x,3)@}x^3\right)+\frac{d}{dx}\left({@coeff(exp,x,2)@}x^2\right)+\frac{d}{dx}\left({@coeff(exp,x,1)@}x\right)+\frac{d}{dx}\left({@coeff(exp,x,0)@}\right)=\) </p><p>\(\displaystyle = ({@coeff(exp,x,3)@})\frac{d}{dx}\left(x^3\right)+({@coeff(exp,x,2)@})\frac{d}{dx}\left(x^2\right)+({@coeff(exp,x,1)@})\frac{d}{dx}\left(x\right)+\frac{d}{dx}\left({@coeff(exp,x,0)@}\right)=\)</p><p>\(\displaystyle =({@coeff(exp,x,3)@})(3)x^2+({@coeff(exp,x,2)@})(2)x+\left({@coeff(exp,x,1)@}\right)=\) </p><p>\(\displaystyle = {@ta1@}\). </p><p><br></p><p>Por tanto \(\displaystyle\frac{d}{dx}\left({@exp@}\right)={@ta1@}\)</p><p><br></p><p></p><p>2.- Calculemos la pendiente de la recta tangente a la función \(\displaystyle f(x)={@exp@}\) en el punto \(\displaystyle (1,{@ta5@})\) .</p><p><br></p><p></p><p>Para ello, primeramente calculamos \(f^{\ \prime}\left(1\right)\ : \)</p><p>Como \(f^{\ \prime}\left(x\right)={@ta1@}\), se sigue que \(f^{\ \prime}\left(1\right)=({@coeff(ta1,x,2)@})(1)^2+({@coeff(ta1,x,1)@})(1)+({@coeff(ta1,x,0)@})=({@coeff(ta1,x,2)@})+({@coeff(ta1,x,1)@})+({@coeff(ta1,x,0)@})={@ta4@}\). </p><p><br></p><p>Por tanto \(f^{\ \prime}\left(1\right)={@ta4@}\).</p><p><br> </p><p></p><p>3.- Calculemos la ecuación de la recta tangente a la función \(\displaystyle f(x)={@exp@}\) en el punto \(\displaystyle (1,{@ta5@})\).<br></p><p>Sabemos que la ecuación de la recta tangente a una función \(g(x)\) en el punto \((a,g(a))\) viene dada por:</p><p>\[y-g(a)= g^{\ \prime}\left(a\right)(x-a)\].</p><p>Por tanto la ecuación de la recta tangente a la función \(\displaystyle f(x)={@exp@}\) en el punto \(\displaystyle (1,{@ta5@})\) es:</p><p> \(y-f(1)= f^{\ \prime}\left(1\right)(x-1)\). </p><p><br></p><p>Calculando:</p><p> \(f(1)=({@coeff(exp,x,3)@})(1)^3+({@coeff(exp,x,2)@})(1)^2+({@coeff(exp,x,1)@})+({@coeff(exp,x,0)@})=({@coeff(exp,x,3)@})+({@coeff(exp,x,2)@})+({@coeff(exp,x,1)@})+({@coeff(exp,x,0)@})={@ta5@}\). </p><p><br></p><p>Como \(f^{\ \prime}\left(1\right)={@ta4@}\) se tiene entones que:</p><p> \(y-f(1)= f^{\ \prime}\left(1\right)(x-1)\), esto es \(y-({@ta5@})= {@ta4@}(x-1)={@ta4@}x-({@ta4@})\).</p><p><br></p><p>Se sigue que la ecuación de la recta tangente es \(y= {@ta4@}x+({@-ta4+ta5@})\)<br></p><p><br></p><p><br></p>
Question note
@epn@
Input: ans1
Input type
Algebraic input
Checkbox
Drop down list
Matrix
Radio
Single character
Text area
True/False
Units
Model answer
Input box size
Strict syntax
No
Sí
Insert stars
Don't insert stars
Insert stars for implied multiplication only
Insert stars assuming single-character variable names
Insert stars for spaces only
Insert stars for implied multiplication and for spaces
Insert stars assuming single-character variables, implied and for spaces
Syntax hint
Hint attribute
Value
Placeholder
Forbidden words
Allowed words
Forbid float
No
Sí
Require lowest terms
No
Sí
Check the type of the response
No
Sí
Student must verify
No
Sí
Show the validation
No
Yes, with variable list
Yes, without variable list
Extra options
Input: ans2
Input type
Algebraic input
Checkbox
Drop down list
Matrix
Radio
Single character
Text area
True/False
Units
Model answer
Input box size
Strict syntax
No
Sí
Insert stars
Don't insert stars
Insert stars for implied multiplication only
Insert stars assuming single-character variable names
Insert stars for spaces only
Insert stars for implied multiplication and for spaces
Insert stars assuming single-character variables, implied and for spaces
Syntax hint
Hint attribute
Value
Placeholder
Forbidden words
Allowed words
Forbid float
No
Sí
Require lowest terms
No
Sí
Check the type of the response
No
Sí
Student must verify
No
Sí
Show the validation
No
Yes, with variable list
Yes, without variable list
Extra options
Input: ans3
Input type
Algebraic input
Checkbox
Drop down list
Matrix
Radio
Single character
Text area
True/False
Units
Model answer
Input box size
Strict syntax
No
Sí
Insert stars
Don't insert stars
Insert stars for implied multiplication only
Insert stars assuming single-character variable names
Insert stars for spaces only
Insert stars for implied multiplication and for spaces
Insert stars assuming single-character variables, implied and for spaces
Syntax hint
Hint attribute
Value
Placeholder
Forbidden words
Allowed words
Forbid float
No
Sí
Require lowest terms
No
Sí
Check the type of the response
No
Sí
Student must verify
No
Sí
Show the validation
No
Yes, with variable list
Yes, without variable list
Extra options
Potential response tree: prt1
Question value
Auto-simplify
No
Sí
Feedback variables
This potential response tree will become active when the student has answered:
ans1
=0
=1
1
Node 1
Answer test
AlgEquiv
CasEqual
CompletedSquare
Diff
EqualComAss
Expanded
FacForm
Int
LowestTerms
Num-GT
Num-GTE
NumAbsolute
NumDecPlaces
NumRelative
NumSigFigs
PartFrac
RegExp
SameType
SigFigsStrict
SingleFrac
String
StringSloppy
SubstEquiv
SysEquiv
UnitsAbsolute
UnitsRelative
UnitsSigFigs
UnitsStrictAbsolute
UnitsStrictRelative
UnitsStrictSigFigs
SAns
TAns
Test options
Quiet
No
Sí
Node 1 when true
Mod
=
+
-
Score
Penalty
Next
[stop]
Answer note
Node 1 true feedback
Node 1 when false
Mod
=
+
-
Score
Penalty
Next
[stop]
Answer note
Node 1 false feedback
Potential response tree: prt2
Question value
Auto-simplify
No
Sí
Feedback variables
This potential response tree will become active when the student has answered:
ans1, ans2
=0
=1
-0
+0
1
2
Node 1
Answer test
AlgEquiv
CasEqual
CompletedSquare
Diff
EqualComAss
Expanded
FacForm
Int
LowestTerms
Num-GT
Num-GTE
NumAbsolute
NumDecPlaces
NumRelative
NumSigFigs
PartFrac
RegExp
SameType
SigFigsStrict
SingleFrac
String
StringSloppy
SubstEquiv
SysEquiv
UnitsAbsolute
UnitsRelative
UnitsSigFigs
UnitsStrictAbsolute
UnitsStrictRelative
UnitsStrictSigFigs
SAns
TAns
Test options
Quiet
No
Sí
Node 1 when true
Mod
=
+
-
Score
Penalty
Next
[stop]
Node 2
Answer note
Node 1 true feedback
Node 1 when false
Mod
=
+
-
Score
Penalty
Next
[stop]
Node 2
Answer note
Node 1 false feedback
Node 2
Answer test
AlgEquiv
CasEqual
CompletedSquare
Diff
EqualComAss
Expanded
FacForm
Int
LowestTerms
Num-GT
Num-GTE
NumAbsolute
NumDecPlaces
NumRelative
NumSigFigs
PartFrac
RegExp
SameType
SigFigsStrict
SingleFrac
String
StringSloppy
SubstEquiv
SysEquiv
UnitsAbsolute
UnitsRelative
UnitsSigFigs
UnitsStrictAbsolute
UnitsStrictRelative
UnitsStrictSigFigs
SAns
TAns
Test options
Quiet
No
Sí
Node 2 when true
Mod
=
+
-
Score
Penalty
Next
[stop]
Node 1
Answer note
Node 2 true feedback
Node 2 when false
Mod
=
+
-
Score
Penalty
Next
[stop]
Node 1
Answer note
Node 2 false feedback
Potential response tree: prt3
Question value
Auto-simplify
No
Sí
Feedback variables
This potential response tree will become active when the student has answered:
ans3
=0
=1
1
Node 1
Answer test
AlgEquiv
CasEqual
CompletedSquare
Diff
EqualComAss
Expanded
FacForm
Int
LowestTerms
Num-GT
Num-GTE
NumAbsolute
NumDecPlaces
NumRelative
NumSigFigs
PartFrac
RegExp
SameType
SigFigsStrict
SingleFrac
String
StringSloppy
SubstEquiv
SysEquiv
UnitsAbsolute
UnitsRelative
UnitsSigFigs
UnitsStrictAbsolute
UnitsStrictRelative
UnitsStrictSigFigs
SAns
TAns
Test options
Quiet
No
Sí
Node 1 when true
Mod
=
+
-
Score
Penalty
Next
[stop]
Answer note
Node 1 true feedback
Node 1 when false
Mod
=
+
-
Score
Penalty
Next
[stop]
Answer note
Node 1 false feedback
Options
Question-level simplify
No
Sí
Assume positive
No
Sí
Standard feedback for correct
Correct answer, well done.
Standard feedback for partially correct
Your answer is partially correct.
Standard feedback for incorrect
Incorrect answer.
Multiplication sign
Dot
Cross
Ninguno
Surd for square root
No
Sí
Meaning and display of sqrt(-1)
i
j
symi
symj
Inverse trigonometric functions
cos⁻¹(x)
acos(x)
arccos(x)
Default shape of matrix parentheses
[
(
{
|
Pista 1
Pista 2
Marcas
Marcas
galoisenlinea
Manage standard tags
Creado / Último guardado
Creado
por
Dr. Ricardo Lopez
en
lunes, 11 de octubre de 2021, 20:33
Último guardado
por
Dr. Ricardo Lopez
en
lunes, 11 de octubre de 2021, 20:33
Vista previa
Fix dollars
Replace
$...$
with
\(...\)
and
$$...$$
with
\[...\]
on save.
En este formulario hay campos obligatorios
.