

Solution

eps					
nction range definition	on				
The set of values of th	ne dependent variable fo	which a function is d	efined		
d the minimum and	maximum value in each	defined interval and	d unite the results		
omain of $\sqrt{x^2 - 6x}$	$+8: x \le 2 \text{ or } x$	> 4			Hide Ste _l
Domain definition	<u> </u>	-			
The domain of a fu	nction is the set of input o	or argument values fo	r which the function is r	eal and defined	
Find non – negative values for radicals: $x \le 2$ or $x \ge 4$					Show Steps
The function domain					
≤ 2 or $x \geq 4$					
					Hide Ste _l
extreme Points of $\sqrt{x^2-6x+8}$: Minimum $(2,0)$, Minimum $(4,0)$,
First Derivative Test		han			
If $f'(x) > 0$ to the l	is a critical point of $f(x)$ t eft of $x = c$ and $f'(x) < 0$	to the right of $x = c$ t			
If $f'(x) < 0$ to the l	eft of $x = c$ and $f'(x) > 0$) to the right of $x = c$	then $x = c$ is a local mini	mum.	
If $f'(x)$ is the same	sign on both sides of $x =$	c then $x = c$ is neithe	r a local maximum nor a	local minimum.	
Find the critical points: $x = 2, x = 4$					Show Steps
Domain of $\sqrt{x^2-6x+8}$: $x\leq 2$ or $x\geq 4$					Show Steps
Domain of $\sqrt{x^2-6}$	$6x + 8 : x \le 2$ or	$x \ge 4$			
Combine the critical	point(s): $x = 2, x = 4$ w	rith the domain			
The function monoto	one intervals are:				
$-\infty < x < 2, 4 < x < 3$					
Check the sign of f^{\prime}	$f(x) = \frac{x-3}{\sqrt{x^2 - 6x + 8}}$ at ϵ	each monotone inter	val		
	$\sqrt{x^2-6x+8}$				
Check the sign of $\frac{x-3}{\sqrt{x^2-6x+8}}$ at $-\infty < x < 2$: Negative					Show Steps
V	$x^2 - 6x + 8$				
Check the sign of $\frac{x-3}{\sqrt{x^2-6x+8}}$ at $4 < x < \infty$: Positive					Show Steps
V	$x^2 - 6x + 8$				
Use the First Derivative Test Variation for discontinous functions					Show Steps
summary of the mor	notone intervals behavio				
	$-\infty < x < 2$	x = 2 NA	x = 4 NA	$4 < x < \infty$	
Sian	Decreasing	Minimum	Minimum	Increasing	
Sign Behavior	5 cci cd3iiig		- miningili	222/119	
Sign Behavior					
Behavior	$\frac{1}{1}$				
Behavior	$int x = 2 into \sqrt{x^2 - 6x}$	$y + 8 \Rightarrow y = 0$			

Minimum(2,0), Minimum(4,0)

Find the range for the interval $-\infty < x \le 2$: $0 \le f(x) < \infty$

Hide Steps 🖨

Compute the values of the function at the edges of the interval:

For x = 2, the function value is f(2) = 0

$$\lim_{x \to -\infty} \left(\sqrt{x^2 - 6x + 8} \right) = \infty$$

Show Steps 🕕

The interval has a minimum point at x = 2 with value f(2) = 0

Combine the function value at the edge with the extreme points of the function in the interval:

Minimum function value at the domain interval $-\infty < x \le 2$ is 0

Maximum function value at the domain interval $-\infty < x \le 2$ is ∞

Therefore the range of $\sqrt{x^2 - 6x + 8}$ at the domain interval $-\infty < x < 2$ is

$$0 \le f(x) < \infty$$

Find the range for the interval $4 \le x < \infty$: $0 \le f(x) < \infty$

Hide Steps

Compute the values of the function at the edges of the interval:

For x = 4, the function value is f(4) = 0

$$\lim_{x \to \infty} \left(\sqrt{x^2 - 6x + 8} \right) = \infty$$

Show Steps \\

The interval has a minimum point at x = 4 with value f(4) = 0

Combine the function value at the edge with the extreme points of the function in the interval:

Minimum function value at the domain interval $4 \leq x < \infty$ is 0

Maximum function value at the domain interval $4 \leq x < \infty$ is ∞

Therefore the range of $\sqrt{x^2 - 6x + 8}$ at the domain interval $4 < x < \infty$ is

$$0 \le f(x) < \infty$$

Combine the ranges of all domain intervals to obtain the function range

$$f(x) \ge 0$$
 or $f(x) \ge 0$

$$f(x) \ge 0$$

Graph

